A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding
نویسندگان
چکیده
Inertial navigation systems (INS) are composed of inertial sensors, such as accelerometers and gyroscopes. An INS updates its orientation and position automatically; it has an acceptable stability over the short term, however this stability deteriorates over time. Odometry, used to estimate the position of a mobile robot, employs encoders attached to the robot’s wheels. However, errors occur caused by the integrative nature of the rotating speed and the slippage between the wheel and the ground. In this paper, we discuss mobile robot position estimation without using external signals in indoor environments. In order to achieve optimal solutions, a Kalman filter that estimates the orientation and velocity of mobile robots has been designed. The proposed system combines INS and odometry and delivers more accurate position information than standalone odometry.
منابع مشابه
A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملThe CLAPPER: A Dual-Drive Mobile Robot with Internal Correction of Dead-Reckoning Errors
This paper presents a new approach to accurate and reliable dead-reckoning with mobile robots. The approach makes use of special properties of our recently developed Multi-Degreeof-Freedom (MDOF) mobile platform, in which two differential-drive mobile robots (called "trucks") are physically connected through a compliant linkage. Using one linear and two rotary encoders, the system can measure t...
متن کاملRobust Dead Reckoning System for Mobile Robots Based on Particle Filter and Raw Range Scan
Robust dead reckoning is a complicated problem for wheeled mobile robots (WMRs), where the robots are faulty, such as the sticking of sensors or the slippage of wheels, for the discrete fault models and the continuous states have to be estimated simultaneously to reach a reliable fault diagnosis and accurate dead reckoning. Particle filters are one of the most promising approaches to handle hyb...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کامل